#### **Cooper University Hospital**

Camden, NJ







#### Andrew Voorhees | Structural Option

Faculty Advisor: Dr. Hanagan

#### Building Introduction

- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions



- •Architecture & Engineering: EwingCole Construction: HSC & Turner Construction
- •320,000 GSF
- Project cost \$220 Million
- 10 Stories

  - Clinical cardiology
  - Private patient rooms

#### Introduction

- Completed December 2008

  - Operation suites



#### • Building Introduction

- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions



## **Existing Gravity System**

Reinforced piles - 68' depth

Composite steel floor

- 2" 18 gauge deck
- 3<sup>1</sup>/<sub>4</sub>" LW concrete topping

Wide flange members

30' column spacing typical



#### • Building Introduction

- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions



## **Existing Lateral System**

- Concentrically braced framesHSS members
- 4 frames in each direction

- Low impact on architecture
- Torsional irregularity based on center of rigidity





 Building Introduction • **Problem Statement & Solution**  Gravity System Slabs Columns • Lateral System Cost Layout • Shear Walls Moment Frames Acoustics Breadth Construction Breadth • Conclusions

### **Problem Statement**

- **Torsional Irregularities**
- Code changes increased seismic loads Drift issues

Concrete may be cheaper Lower floor to floor heights

## **Proposed Solution**

- Control drifts
  - $\bullet$ moment frames
- Decrease cost
  - slabs and columns

#### Change lateral system to shear walls and

### • Redesign gravity system out of concrete:

| $\bigcirc$ | Building Introduction             | • | D |
|------------|-----------------------------------|---|---|
| 0          | Problem Statement & Solution      |   | • |
| 0          | Gravity System                    |   | • |
|            | <ul> <li>Slabs</li> </ul>         |   |   |
|            | <ul> <li>Columns</li> </ul>       | • | E |
| $\bigcirc$ | Lateral System                    |   | • |
|            | <ul> <li>Layout</li> </ul>        |   | • |
|            | <ul> <li>Shear Walls</li> </ul>   |   | • |
|            | <ul> <li>Moment Frames</li> </ul> |   | • |
| $\bigcirc$ | Acoustics Breadth                 |   |   |
| 0          | Construction Breadth              |   |   |
| 0          | Conclusions                       |   |   |

#### Goals

- esign an alternative structural system Educational value
- Maintain original conditions
- valuate the two systems based on: Feasibility
- Acoustics
- Cost
- Schedule

## **Proposed Solution**

- Control drifts
  - moment frames
- Decrease cost  $\bullet$ 
  - slabs and columns

#### Change lateral system to shear walls and

### Redesign gravity system out of concrete:

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions

- Less labor and formwork than one way
- Use of drop panels to decrease required thickness
- Live Load = 80 psf Dead Load = 125 psf

## Slab Design

Two way slab chosen based on smallest floor depth

- Trial slab thickness of 10"
- Drop panels 10'x10' • 2.5" thick
- Adequate for punching shear
- Deflections satisfied by use of ACI 318-11 Table 9.5(c)
- $\bullet$ 
  - Column, Middle, and Beam strips

## Moments distributed via Direct Design Method

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth  $\bigcirc$
- Construction Breadth
- Conclusions



## Slab Design

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions

## Column Design

- 24" x 24" throughout building
- Floor to floor height decreased
  - Basement 2<sup>nd</sup> Floor
    f'c = 6000 psi

3<sup>rd</sup> Floor - 10<sup>th</sup> Floor
 f'c = 4000 psi

| Column | Floor                 | Location | f′ <sub>c</sub> | P <sub>u</sub> (k) | Reinforcing  |
|--------|-----------------------|----------|-----------------|--------------------|--------------|
| C - 6  | Basement              | Center   | 6000            | 2220               | (16) - #11's |
| C - 6  | 6 <sup>th</sup> Floor | Center   | 4000            | 1230               | (12) - #8's  |
| B - 7  | Basement              | Edge     | 6000            | 1429               | (8) - #8's   |
| B - 2  | Basement              | Corner   | 6000            | 1068               | (8) - #8's   |





- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions

## Lateral System

- Building height decreased  $\rightarrow$  Wind loads decreased
- Building weight increased → Seismic loads increased
- Seismic controls

| Base Shear (kips)                         |     |      |      |      |
|-------------------------------------------|-----|------|------|------|
| Wind N-S Wind E-W Seismic N-S Seismic E-W |     |      |      |      |
| Steel                                     | 518 | 2020 | 1462 | 1462 |
| Concrete                                  | 443 | 1729 | 1898 | 3138 |

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions



### Lateral System Layout

Braced Frames



#### Existing Lateral System





- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth  $\bigcirc$
- Construction Breadth
- Conclusions



#### Lateral System Layout

**Braced Frames** 

# 

Shear Walls

#### Existing Lateral System







#### Proposed Lateral System

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth  $\bigcirc$
- Construction Breadth
- Conclusions

- Moment frames in N-S direction Exterior Frames: columns & edge beams  $\bullet$ Interior Frames: columns & slab
- Torsional Irregularity Large eccentricity between COM & COR

### Lateral System Layout

Shear walls in E-W direction



Proposed Lateral System



COM

COR

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth  $\bigcirc$
- Construction Breadth
- Conclusions

- Shear walls in E-W direction
- Moment frames in N-S direction Exterior Frames: columns & edge beams Interior Frames: columns & slab



-Large eccentricity between COM & COR-

### Lateral System Layout

Torsional Irregularity



Proposed Lateral System



#### COR

COM

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions



- Rigid diaphragm constraints
- Walls neglect out of plane stiffness  $\bullet$ 
  - Stiffness modifiers based on ACI 318-11 section 10.10.4.1

## **ETABS Model**

Drift checks



- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth  $\bigcirc$
- Construction Breadth
- Conclusions



## Shear Wall Design

- V = 1038 k $\bullet$
- M = 52,240 ft-k

- Controlling load combination 0.9D + 1.0E
- Height 138'
- Width -25' $\bullet$
- Wall thickness 18"  $\bullet$
- Columns act as boundary elements
- overturning moment

Tension & Compression reinforcing for

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth  $\bigcirc$
- Construction Breadth
- Conclusions

- Drifts checked to find acceptable size
  - Edge beams 24" x 24"
- Portal analysis to verify ETABS output

### **Moment Frame Design**

Edge frames stiffer than interior frames

| Shear (kips) |               |               |               |               |
|--------------|---------------|---------------|---------------|---------------|
|              | Frame B (Ext) | Frame C (Int) | Frame D (Int) | Frame E (Ext) |
| Ex + Ext     | 663           | 197           | 353           | 661           |
| Ex - Ext     | 647           | 195           | 354           | 673           |



- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns

#### Lateral System

- Layout
- Shear Walls
- Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions

#### **Moment Frame Design**

Controlling Load Combination 1.2D + 1.0E + 1.0L

 $\bullet$ 

Edge beam reinforcing (5) - #10 bars top & bottom • #4 hoops @ 10"

- Slab reinforcing in addition to gravity loads
  - Column Strip  $\bullet$

Middle Strip  $\bullet$ 

- Column reinforcing also updated because of  $\bullet$ laterally induced moments and shear • B-7: (8)  $\#8's \rightarrow (12) \#9's$ Tie spacing reduced:  $18" \rightarrow 10"$

- Pos: + 0 bars
- Neg: + 6 bars
- Pos: + 0 bars
- Neg: + 1 bar

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions

#### Acoustics

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions



## **Roof Noise Transmission**

10<sup>th</sup> Floor Patient Room

- Steel roof vs. concrete slab
- Chiller located on roof above
- Absorption 211 sabins
- Aim for RC-30

| Patient Room 10 <sup>th</sup> Floor |     |     |           |      |      |      |
|-------------------------------------|-----|-----|-----------|------|------|------|
| Frequency (Hz)                      | 125 | 250 | 500       | 1000 | 2000 | 4000 |
| Chiller, L <sub>1</sub>             | 85  | 87  | 87        | 90   | 98   | 91   |
| Concrete TL                         | 63  | 72  | 84        | 92   | 104  | 105  |
| NR                                  | 62  | 71  | 83        | 91   | 103  | 104  |
| L <sub>2</sub>                      | 23  | 16  | 4         | 0    | 0    | 0    |
| Steel TL                            | 41  | 52  | <b>52</b> | 71   | 75   | 78   |
| NR                                  | 40  | 51  | 51        | 70   | 74   | 77   |
| L <sub>2</sub>                      | 45  | 36  | 36        | 20   | 24   | 14   |
|                                     |     |     |           |      |      |      |
| RC-30                               | 45  | 40  | 35        | 30   | 25   | 20   |
| NR Req                              | 40  | 47  | 52        | 60   | 73   | 71   |
| TL Req                              | 41  | 48  | 53        | 61   | 74   | 72   |

• Steel TL too low at 500 Hz

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions

- (dB) SSO ission **Fransn**

-Concrete System TL Contour —Chiller Sound Pressure Level

#### STC Chart

#### Noise Criteria (NC)





#### **Octave Band Center Frequency (Hz)**

-Concrete Roof System

#### -Composite Deck Roof System

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions

#### Construction

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- **Construction Breadth**
- Conclusions

- $\bullet$
- Structure cost 4% of total project cost
- Structural members 67% of total cost

#### **Steel Cost**

Steel cost calculated by tonnage

| Steel Cost Breakdown  |    |           |  |
|-----------------------|----|-----------|--|
| Beams                 | \$ | 3,669,945 |  |
| Columns               | \$ | 2,054,205 |  |
| Braces                | \$ | 300,814   |  |
| Fireproofing          | \$ | 791,217   |  |
| Steel Decking         | \$ | 992,154   |  |
| Conc Topping          | \$ | 879,998   |  |
| Placing Conc          | \$ | 93,752    |  |
| <b>Finishing Conc</b> | \$ | 247,320   |  |
|                       |    |           |  |
| Total                 | \$ | 9,029,405 |  |

\$ 28.22 per SF

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions

- No fireproofing for concrete structure
- Formwork 56% of total cost
- Reinforcing steel 20% of total cost

- 7% cost savings over steel
- 1' per floor decrease = 7750 SF of façade savings

#### **Concrete Cost**

| Steel Cost Breakdown  |    |           |  |
|-----------------------|----|-----------|--|
| Beams                 | \$ | 3,669,945 |  |
| Columns               | \$ | 2,054,205 |  |
| Braces                | \$ | 300,814   |  |
| Fireproofing          | \$ | 791,217   |  |
| <b>Steel Decking</b>  | \$ | 992,154   |  |
| Conc Topping          | \$ | 879,998   |  |
| Placing Conc          | \$ | 93,752    |  |
| <b>Finishing Conc</b> | \$ | 247,320   |  |
|                       |    |           |  |
| Total                 | \$ | 9,029,405 |  |

\$ 28.22 per SF

| Concrete Cost Breakdown |    |           |  |
|-------------------------|----|-----------|--|
| Formwork                | \$ | 4,684,332 |  |
| Conc Vol                | \$ | 1,254,047 |  |
| Placing                 | \$ | 438,709   |  |
| Finishing               | \$ | 376,472   |  |
| <b>Reinf Steel</b>      | \$ | 1,653,306 |  |
|                         |    |           |  |
| Total                   | \$ | 8,406,867 |  |

#### \$ 26.27 per SF

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions

- Construction length – 188 days
- February '07 October '07

#### **Steel Schedule**

| ו |      |     | Task Name 🗸 🗸                                                | Durat 🚽 | Predecessors |
|---|------|-----|--------------------------------------------------------------|---------|--------------|
|   |      | 506 | Install Structural Steel (3) Columns 4-8,<br>Floors Base-4th | 15 days | 495          |
|   |      | 507 | Plumb Structure Columns 4-8, Floors<br>Base-4th              | 5 days  | 506FF+2 days |
| 7 |      | 508 | Detail and Moment Con Col 4-8, Flr's<br>Base-4th             | 12 days | 507SS+2 days |
|   |      | 509 | Metal Decking and Studs Col 4-8, Flr's<br>Base-4th           | 12 days | 508SS+3 days |
|   |      | 510 | Perimeter and Opening Protection Cols 4-8,<br>Flr's 1st-4th  | 5 days  | 509FF        |
|   |      | 511 | HVAC Rough in Slab on Metal Deck Col's 4-8,<br>Fir's 1st-3rd | 8 days  | 510          |
|   | hart | 512 | Reinforcement Steel & Mesh Col's 4-8, Flr's<br>1st-3rd       | 10 days | 511          |



| 519 | Pour Stair #1 Basement - 4th Floor                           | 1 day 513SS,505 |
|-----|--------------------------------------------------------------|-----------------|
| 520 | Install Structural Steel (3a) Column's 1-4<br>Fir's Base-4th | 11 days 506     |

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth
- Conclusions

- Construction length – 188 days
- February '07 October '07

#### **Steel Schedule**

| ) |      |     | Task Name 🗸                                                  | Durat 🚽 | Predecessors |
|---|------|-----|--------------------------------------------------------------|---------|--------------|
|   |      | 506 | Install Structural Steel (3) Columns 4-8,<br>Floors Base-4th | 15 days | 495          |
|   |      | 507 | Plumb Structure Columns 4-8, Floors<br>Base-4th              | 5 days  | 506FF+2 days |
| 7 |      | 508 | Detail and Moment Con Col 4-8, Flr's<br>Base-4th             | 12 days | 507SS+2 days |
|   |      | 509 | Metal Decking and Studs Col 4-8, Flr's<br>Base-4th           | 12 days | 508SS+3 days |
|   |      | 510 | Perimeter and Opening Protection Cols 4-8,<br>Flr's 1st-4th  | 5 days  | 509FF        |
|   |      | 511 | HVAC Rough in Slab on Metal Deck Col's 4-8,<br>Fir's 1st-3rd | 8 days  | 510          |
|   | hart | 512 | Reinforcement Steel & Mesh Col's 4-8, Flr's<br>1st-3rd       | 10 days | 511          |



| 519 | Pour Stair #1 Basement - 4th Floor                           | 1 day   | 513SS,505 |
|-----|--------------------------------------------------------------|---------|-----------|
| 520 | Install Structural Steel (3a) Column's 1-4<br>Fir's Base-4th | 11 days | 506       |

- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth  $\bigcirc$
- **Construction Breadth**
- Conclusions

- Construction length – 260 days
- February '07-February '08
- 14 weeks longer than steel

#### **Concrete Schedule**

|     | Task Name                                              | Dura   | Predecessors 🖕 |
|-----|--------------------------------------------------------|--------|----------------|
| 502 | Set Steel Reinforcing,<br>Columns and Walls, 2nd Floor | 4 days | 499SS+1 day    |
| 503 | Form Columns and Walls, 2nd<br>Floor                   | 6 days | 502SS+2 days   |
| 504 | Pour Columns and Walls, 2nd<br>Floor                   | 2 days | 503FF+1 day    |
| 505 | Form Slab, 3rd Floor                                   | 9 days | 504SS+1 day    |
| 506 | Set Steel Reinforcing, Slab,<br>3rd Floor              | 5 days | 505FF+1 day    |
| 507 | Pour Slab, 3rd Floor                                   | 7 days | 506SS+1 day    |
| 508 | Perimeter and Opening<br>Protection, Slab, 3rd Floor   | 2 days | 507            |
| 509 | Finish Columns and Walls, 2nd<br>Floor                 | 5 days | 507FS+10 days  |
| 510 | Finish Slab, 2nd Floor                                 | 4 days | 507FS+10 days  |
| 511 | Set Steel Reinforcing,<br>Columns and Walls, 3rd Floor | 4 days | 508SS+1 day    |
| 512 | Form Columns and Walls, 3rd<br>Floor                   | 6 days | 511SS+2 days   |
| 513 | Pour Columns and Walls, 3rd<br>Floor                   | 2 days | 512FF+1 day    |
| 514 | Form Slab, 4th Floor                                   | 9 days | 513SS+1 day    |



- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth  $\bigcirc$
- **Construction Breadth**
- Conclusions

- Construction length – 260 days
- February '07-February '08
- 14 weeks longer than steel

#### **Concrete Schedule**

|  |     | Task Name 🗸                                            | Dura 🚽 | Predecessors 🚽 |
|--|-----|--------------------------------------------------------|--------|----------------|
|  | 502 | Set Steel Reinforcing,<br>Columns and Walls, 2nd Floor | 4 days | 499SS+1 day    |
|  | 503 | Form Columns and Walls, 2nd<br>Floor                   | 6 days | 502SS+2 days   |
|  | 504 | Pour Columns and Walls, 2nd<br>Floor                   | 2 days | 503FF+1 day    |
|  | 505 | Form Slab, 3rd Floor                                   | 9 days | 504SS+1 day    |
|  | 506 | Set Steel Reinforcing, Slab,<br>3rd Floor              | 5 days | 505FF+1 day    |
|  | 507 | Pour Slab, 3rd Floor                                   | 7 days | 506SS+1 day    |
|  | 508 | Perimeter and Opening<br>Protection, Slab, 3rd Floor   | 2 days | 507            |
|  | 509 | Finish Columns and Walls, 2nd<br>Floor                 | 5 days | 507FS+10 days  |
|  | 510 | Finish Slab, 2nd Floor                                 | 4 days | 507FS+10 days  |
|  | 511 | Set Steel Reinforcing,<br>Columns and Walls, 3rd Floor | 4 days | 508SS+1 day    |
|  | 512 | Form Columns and Walls, 3rd<br>Floor                   | 6 days | 511SS+2 days   |
|  | 513 | Pour Columns and Walls, 3rd<br>Floor                   | 2 days | 512FF+1 day    |
|  | 514 | Form Slab, 4th Floor                                   | 9 days | 513SS+1 day    |



- Building Introduction
- Problem Statement & Solution
- Gravity System
  - Slabs
  - Columns
- Lateral System
  - Layout
  - Shear Walls
  - Moment Frames
- Acoustics Breadth
- Construction Breadth

#### • Conclusions

#### **Redesign Recap**

- Designed a feasible alternative to steel structure while minimally impacting the architecture
- Controlled lateral displacements
- Provided better acoustical performance
- Decreased cost slightly

#### Conclusions





- $\bullet$
- $\bullet$ •
- My family, friends, and classmates

## Acknowledgements

#### **Special Thanks to:**

- **Cooper University Hospital**
- EwingCole
- The AE Faculty





## **Questions & Comments?**

